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LETIER TO THE EDITOR 

Solutions of the inhomogeneous acoustic-gravity wave 
equation 

J A Adamt 
Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QH, UK 

Received 10 June 1977 

Abstract. The response of a stratified compressible fluid (an ‘atmosphere’) to an oscillatory 
point source has in the past been discussed in an astrophysical context, with a view to 
increasing understanding of the complex problem of wave generation by turbulence. Much 
use has been made in such analyses of a technique developed by Lighthill in 1960; namely a 
method of determining the asymptotic functional form of the solution of the governing 
differential equation. In this analysis the wave equation for acoustic-gravity waves is solved 
exactly by three-fold Fourier integral techniques in a manner similar to that of Rao. Use is 
made of Lighthill’s radiation condition to pick the correct physical solution. 

The governingequation for the normalised pressure perturbation 4 =ppi1/2 for motion 
induced by an as yet unspecified source in an isothermal stratified compressible 
unbounded fluid is (Kato 1966) 

For a source term f = ( fx, f,, fz) in the equation of motion the form of S(x, y, z ,  t )  is 
(Kato 1966) 

where p o ( z )  is the equilibrium density distribution, c is the velocity of sound, g = 
(0, 0, -8) is the acceleration due to gravity, w 1  = yg/2c is the atmospheric acoustic 
cut-off frequency (y is the ratio of specific heats), N = ( y  - 1)1/2g/c is the Brunt-Vaisala 
frequency, and V :  = d2/ax2 + a2/ay ’. 

Physically, the use of the variable pp01/2 rather than p is to factor out the amplitude 
variations required by conservation of energy of the wave as it moves into regions of 
different density. Mathematically, it corresponds to the removal of a first-order 
space-derivative term in equation (1) (i.e. the poles in the integrand of equation (3) 
below are made to lie on the real axis). 

For the termf vanishing outside a restricted region, representing a localised ‘forcing 
function’, the problem can be solved in terms of a three-fold Fourier integral (Lighthill 
1960): 

Y(l, m, n)  exp[i(lx +my + nz)]  m a 3  

dl dm dn I, I, I, G(L m, n )  
4 = exp(iwt) (3) 
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and 

(4) 
Y(I, m, n)  exp[i(lx + my + nz )] m m  

dl dm dn I, I, I, GO, m, n)  
S(x,  y ,  z ,  t )  = exp(iot) 

where we have ascribed time-harmonic behaviour to the source, and 

We investigate solutions of equations (1) and (2) for the case 

i = 1 ,2 ,3 ;  A constant fi = AS (XIS (y)S (2 1 4 3  

i.e. a point disturbance oscillating vertically. 
The Fourier transform of 

is 
c w A  

( N 2  + ing). 
8 r 3 g  

Therefore we may write 

(N’ + ing) m m  polf2A 
exp(iwt) I-, exp[i(lx +my)]  dl  dm I-, G’  exp(inz) dn (6) $=- 

8 n 3 g  

where 

and 

2 2  G ’ = n  -no  (7) 

Lighthill’s radiation condition (Lighthill 1960) consists of replacing w by w - ie, E > 0, 
the source strength being taken as exp[i(o - i~) t ]S(x,  y, z ) .  This provides a unique 
solution to the original problem in the limit E + 0. 

The real simple poles occur at 

aG’/aw 
n = *no+iE- 

aG’lan 

and the displacement is into the upper or lower half-plane according to whether 

aG’/aw 
aG‘/an ’ O’ 

If we take w >0,  then no is displaced into the lower half-plane (-no into the upper 
half-plane) provided w 4  > N2c2(12 + m 2 ) ;  and no is displaced into the upper half-plane 
(-no into the lower half-plane) provided w 4  < N2c2(12+ m 2 ) .  

For a semicircular contour taken in the upper half-plane only 

aG’/aw 
aG’/an 

n = -no+ie---- 
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gives a contribution for w 4  > N2c ’(1’ + m ’). The residue at this pole is to be calculated 
as E + 0. The case w 4  < N2c ’ (1 + m ’) can obviously be considered in a similar manner. 

Now 

(N’ + ing) exp(inz) 
n -no  

2 2  dn 

where 
2 2  s2  = l 2 + m 2 ,  G 2 = - w  +w1. 

Let 

1 = s  cos 4, m = s  s i n d ;  x = r cos 8, y = r sin 0 

hence the solution is 

where 

and 

Therefore 
- 2  1/2 - 2  1 /2  

I l = / o m e x p { - i z [ s 2 ( ~ - l ) - ~ ]  )[s2(g-l)->] }Jo(rs)s ds 

Z2 = Iom exp{ -iz[s2($- 1) -$] 1’2]Jo(rs)s ds. (14) 

Note that equations (13) and (14) also follow from operating with a Fourier-Hankel 
transform on equations (1) and (2), and hence it is possible to formulate axisymmetric 
problems in terms of Bessel functions, in a manner analogous to that of Lighthill (1960). 

These integrals can be evaluated using results given in Erdelyi et a1 (1954). Since we 
are only interested in the qualitative behaviour of $ ( U ;  r, z )  we write down the general 
spatial behaviour only; hence 

1 (15a) 
2 2 1/2 ( 4 1  2 2 -1/2 z1--(2-r r ) exp --(2 -r r ) 

(15b) 
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where r2 = w 2 ( N 2  -wZ) - l ,  and Kv(x)  is a modified Bessel function of the second kind of 
order v, argument x .  

Results (15a)  and (16a)  are appropriate if r2 < 0, while results ( H a )  and (16a)  are 
appropriate for z > rr and r2 > 0. Results (156) and (166) are appropriate for z < T r  
and r2 > 0. We are now in a position to distinguish between three regimes. 

( a )  Buoyancy dominated motions (i.e. compressibility -modified gravity waves): w < 

In this regime (3 is real and r2 > 0, so it is seen that disturbances decay for z > T r  and are 
oscillatory in nature for z < rr. The physical reason for this is best understood by noting 
that internal gravity waves have not only a characteristic frequency, but a characteristic 
direction (gravity). Their propagation is thus markedly anisotropic, and the corres- 
ponding wavenumber surface is asymptotically a cone with half-angle 8 = sin-’(w/N) 
about the vertical-the complete surface being a hyperbola of revolution (Moore and 
Spiegel 1964). Thus gravity waves may only propagate when w <N and they cannot 
propagate vertically (s = 0) since in the absence of any horizontal variation there would 
be no buoyancy force. Thus the quantity I‘ represents the tangent of the angle between 
the wavevector and the horizontal space axis. 

N Z  

( b )  Compressibility dominated motions (i.e. buoyancy -modified sound waves): w > w ;  
In this regime (3 is imaginary and r2 < 0, so the disturbances are oscillatory for all real z 
and r. This merely reflects the fact that, even under gravity, acoustic waves propagate 
nearly isotropically. 

( c )  Trapped modes (horizontally propagating): N 2  < w 2  <U:  

Here 6 is real and r2 < 0. Since, for real x ,  Kv(x)  is a monotonically decreasing function 
(whereas for imaginary x it is oscillatory) it is seen that disturbances in this regime decay 
in z for all real z and r. These are modes ‘trapped’ in the evanescent region in w-s space 
between the acoustic and buoyancy cut-off frequencies. Note that the oscillatory terms 
in equations ( 1 5 )  and (16) represent waves with surfaces of constant phase, z 2  - r2r2 = 
constant, which are hyperbolas asymptotic to the boundary of the region z < T r  (if 
r2 > 0). There is an exponential decay of disturbance energy in the region z > T r  for 
such buoyancy-dominated motions. A similar decay occurs within regime ( c ) .  

In conclusion therefore we have obtained exact closed-form solutions to the 
acoustic-gravity wave equation with a simple source term. In so doing we have been 
able to consider the solution of the problem in some mathematical detail. This extends 
and complements the asymptotic treatment of Moore and Spiegel (1964), and the 
numerical approach of Kat0 (1966). In addition we note that since the effects of 
compressibility were neglected by Rao ( 1  973), its inclusion will introduce more modes 
in the manner of those discussed here. 
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